魏凤英
 
基本信息
职称 教授
职务 硕士生导师
主讲课程 高等代数、线性代数、专业英语、微分方程稳定性理论、随机种群模型及相关研究进展
研究方向 随机微分方程及其应用、生物数学、泛函微分方程及其应用
办公室 数计学院4号楼108
电子邮件
联系电话
个人简介

魏凤英,1976年生,女,吉林四平人,博士,教授,硕导。20067月获理学博士学位,并于同月任教于福州大学数学与计算机科学学院。现任数学系副主任,福建省生物数学学会第二届理事目前的主要科研兴趣:随机微分方程及其在生物数学中的应用、生态种群模型的持久性、绝灭性以及稳定性等、泛函微分方程的稳定性等。

 

任教期间,2007年度获福州大学学术新人奖,2008年,参加范更华教授主持的离散数学及其应用211工程”重点学科团队。曾主持国家自然科学基金两项(1120107510726062),福建省自然科学基金三项(2007J01802010J010052016J01015),福州大学科技发展基金两项(2007-XQ-182010-XQ-24),福州大学人才基金一项(XRC-0630);曾参与国家自然科学基金三项(617731221160108510671031),教育部基金一项(10YJA630037),福建省自然科学基金一项(2011J05004),福建省教育厅四项(JA12051JA09048SJB08028JB08029)、福建省社科规划办一项(2010B117)及福州大学科技发展基金两项(2010-XY-182009-XY-19)。累计发表科研论文90余篇,其中SCI收录20余篇,国内一类及核心期刊收录50余篇。参加国内外学术会议及学术交流访问共计20余次,指导研究生23名,其中已毕业19名,4名在读。

 

工作经历:

20068月至20098月,福州大学,数学与计算机科学学院,讲师,硕导;

20099月至20146月,福州大学,数学与计算机科学学院,副教授,硕导;

20147月至今,福州大学,数学与计算机科学学院,教授,硕导;

20158月至20168月,赫尔辛基大学,数学与统计系,访问教授;

20072-3月,赫尔辛基大学,数学与统计系,访问教授。

 

教育经历:

19969月至20007月,毕业于吉林师范大学,获理学学士学位,

20009月至20037月,毕业于东北师范大学,获理学硕士学位,

20039月至20067月,毕业于东北师范大学,获理学博士学位。

 

科研兴趣:

1. 随机泛函微分方程理论及应用:研究随机系统解的存在唯一性、稳定性等问题

2. 生物数学:研究生态系统的周期解、概周期解、持久性、稳定性等问题;

3. 泛函微分方程理论及应用:研究时滞系统的周期解、稳定性等问题。

 

代表性论文:

[1] Wei Fengying, Wang Ke, Uniform persistence of asymptotically periodic multispecies competition predator pray systems with Holling III type functional response, Applied Mathematics and Computation, 2005, 170(2): 994-998.

[2] Gao Haiyin, Wang Ke, Wei Fengying, Ding Xiaohua, Massera-type theorem and asymptotically periodic Logistic equations, Nonlinear Analysis: Real World Application,  2006, 7(5): 1268-1283.

[3] Wei Fengying, Wang Ke, Asymptotically periodic solution of n-species cooperation system with time delay, Nonlinear Analysis: Real World Application, 2006, 7(4): 591-596.

[4] Wei Fengying, Wang Ke, Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka–Volterra diffusion system, Applied Mathematics and Computation, 2006, 182(1): 161-165.

[5] Wei Fengying, Wang Ke, Permanence of variable coefficients predator-prey system with stage structure, Applied Mathematics and Computation, 2006, 180(2): 594-598.

[6] Wei Fengying, Wang Ke, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, Journal of Mathematics Analysis and Application, 2007, (331): 516-531.

[7] Wei Fengying, Wang Ke, Positive periodic solutions of an n-species ecological system with infinite delay, Journal of Computational and Applied Mathematics, 2007, 208:  362-372.

[8] Wei Fengying, Wang Ke, Persistence of some stage structured ecosystems with finite and infinite delay, Applied Mathematics and Computation, 2007, 189(1): 902-909. 

[9] Wei Fengying, Wang Ke, The periodic solution of functional differential equations with infinite delay, Nonlinear Analysis: Real World Applications, 2010,11(4): 2669-2674.

[10] Wei Fengying, Lin Yangrui, Que Lulu, Chen Yingying, Wu Yunping, Xue Yuanfu, Periodic solution and global stability for a nonautonomous competitive Lotka-Volterra diffusion system, Applied Mathematics and Computation, 2010, 216(10): 3097-3104.

[11] Fengying Wei, Existence of multiple positive periodic solutions to a periodic predator-prey system with harvesting terms and Hollling III type functional response, Communications in Nonlinear Science and Numerical Simulations, 2011, 16(4):  2130-2138.

[12] Fengying Wei, Yuhua Cai, Existence, uniqueness and stability of the solution to neutral stochastic functional differential equations with infinite delay under non-Lipschitz conditions, Advances in Difference Equations, 2013, 151, MR3071991.

[13] Fengying Wei, Yuhua Cai, Global asymptotic stability of stochastic nonautonomous Lotka-Volterra models with infinite delay, Abstract and Applied Analysis, 2013, 351676,   http://dx.doi.org/10.1155/2013/351676.

[14] Fengying Wei, Lanqi Wu, and Yuzhi Fang, Stability and Hopf bifurcation of delayed predator-prey system incorporating harvesting, Abstract and Applied Analysis, 2014, 624162, doi:10.1155/2014/624162.

[15] Fengying Wei, Qiuyue Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Applied Mathematical Modelling, 2016,  40(1): 126-134.

[16] Fengying Wei, Fangxiang Chen, Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Physica A: Statistical Mechanics and its Applications, 2016, 453: 99-107.

[17] Fengying Wei, Stefan A.H.Geritz, Jiaying Cai, A stochastic single-species population model with partial population tolerance in a polluted environment, Applied Mathematics Letters, 2017, 63: 130-136.

[18] Jiamin Liu, Fengying Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Physica A: Statistical Mechanics and its Applications, 2016, 464: 241-250.

[19] Fengying Wei, Jiamin Liu, Long-time behavior of a stochastic epidemic model with varying population size, Physica A: Statistical Mechanics and its Applications, 2017, 470:  146-153.

[20] Fengying Wei, Qiuyue Fu, Globally asymptotic stability of predator-prey model with stage structure incorporating prey refuge, International Journal of Biomathematics, 2016, 9(4): 1650058, doi: 10.1142/S1793524516500583.

[21] Lihong Chen, Fengying Wei, Persistence and distribution of a stochastic susceptible-infected-recovered epidemic model with varying population size,  Physica A: Statistical Mechanics and its Applications, 2017, 483: 386-397.

[22] Fengying Wei, Lihong Chen, Psychological effect on single-species population models in a polluted environment, Mathematical Biosciences, 2017, 290: 22-30.

[23] Lihong Chen, Fengying Wei, Analysis of a susceptible-exposed-infected epidemic model with random perturbation and varying population size, Annals of Applied Mathematics, 2017, 33(2): 130-138.

[24] Rui Xue, Fengying Wei, Persistence and extinction of a stochastic SIS epidemic model with double epidemic hypothesis, Annals of Applied Mathematics, 2017, 33(1): 77-89.